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Abstract

A Bely̆ı map β : P1(C)→ P1(C) is a rational function with at most three
critical values; we may assume these values are {0, 1, ∞}. A Dessin
d’Enfant is a planar bipartite graph obtained by considering the preim-
age of a path between two of these critical values, usually taken to be the
line segment from 0 to 1. Such graphs can be drawn on the sphere by
composing with stereographic projection: β−1([0, 1]

)
⊆ P1(C) ' S2(R).

Replacing P1 with an elliptic curve E, there is a similar definition of a
Bely̆ı map β : E(C) → P1(C). Since E(C) ' T2(R) is a torus, we
call (E, β) a toroidal Bely̆ı pair. The corresponding Dessin d’Enfant
can be drawn on the torus by composing with an elliptic logarithm:
β−1([0, 1]

)
⊆ E(C) ' T2(R).

This project seeks to create a database of (i) Bely̆ı pairs (X, β) for either
X = P1(C) ' S2(R) or X = E(C) ' T2(R), (ii) their corresponding
Dessins d’Enfant, and (iii) their monodromy groups. For each positive
integerN , there are only finitely many Bely̆ı pairs with deg β = N . Using
the Hurwitz Genus formula, we can begin this database by considering all
possible degree sequences D on the ramification indices as multisets on
three partitions of N . For each degree sequence, we compute all possible
monodromy groups G = im

[
π1
(
P1(C) − {0, 1, ∞}

)
→ SN

]
. Finally,

for each possible monodromy group, we compute explicit formulas for
Bely̆ı maps β : X → P1(C) associated to the aforementioned Riemann
surfaces X . We will discuss some of the challenges of determining the
structure of these groups.

This work is part of PRiME (Purdue Research in Mathematics Expe-
rience) with Chineze Christopher, Robert Dicks, Gina Ferolito, Joseph
Sauder, and Danika Van Niel with assistance by Edray Goins and Ab-
hishek Parab.

Bely̆ı Pairs
Let X be a compact, connected Riemann surface of genus g. There
are two examples of interest.

• The projective line P1 may be embedded into the projective plane using
the map P1→ P2 which sends (x1 : x0) 7→ (x1 : 0 : x0), so that this curve
corresponds to the zeroes of the polynomial f (x, y) = y. The set of
complex points, namely X = P1(C) ' S2(R), is a sphere; it has genus
g = 0.
• An elliptic curve E is a nonsingular projective variety of genus g = 1.

There is a unique complex number j(E) = 1728 J such that E
corresponds to the zeroes of the polynomial

f (x, y) =


x3 + 1− y2 when j(E) = 0;
x3 − x− y2 when j(E) = 1728; and

x3 + 3 J
1− J

x + 2 J
1− J

− y2 when j(E) 6= 0, 1728.

The set of complex points, namely X = E(C) ' T2(R), is a torus.

Since X may be viewed as the set of zeroes of a single polynomial f (x, y),
a non-constant meromorphic function β : X → P1(C) can be written as
β(x, y) = p(x, y)/q(x, y), the ratio of two polynomials. Given P in the
inverse image

β−1(ω) =

{
(x : y : 1) ∈ P2(C)

∣∣∣∣∣ f (x, y) = 0
ω0 p(x, y)− ω1 q(x, y) = 0

}
we define eP as the multiplicity of the root P in the polynomial equations
above. Usually eP = 1; we say ω ∈ P1(C) is a branch point if eP 6= 1 for
some P ∈ β−1(ω). We say (X, β) is a Bely̆ı Pair if β is unbranched away
from {0, 1, ∞}.

Dessins d’Enfants

Consider the line segment [0, 1] connecting 0 to 1 in P1(C). For any Bely̆ı pair
(X, β), the inverse image β−1([0, 1]

)
⊆ X yields a bipartite graph Γ = (V,E)

as follows:

• denote the “black” vertices as the inverse image B = β−1(0),
• the “white” vertices as the inverse image W = β−1(1),
• the edges as the inverse image E = β−1([0, 1]

)
, and

• the midpoints of the faces as the inverse image F = β−1(∞).

That graph with vertices V = B ∪ W and edges E is called a Dessin
d’Enfant.

Monodromy Groups
The Degree Sequence of a Bely̆ı pair is a multiset

D =
{{

eP
∣∣P ∈ B}, {eP ∣∣P ∈ W}, {eP ∣∣P ∈ F}}

where B = β−1(0), W = β−1(1), and F = β−1(∞). The Riemann-Roch
Theorem asserts that

N =
∑
P∈B

eP =
∑
P∈W

eP =
∑
P∈F

eP = |B| + |W | + |F | +
(
2 g − 2

)
.

In particular, D is a multiset of three partitions of N = deg β into a total of
N parts.

Conversely, such a collection of multisets D is the degree sequence for some
Bely̆ı pair (X, β) with deg β = N if and only if there exist permutations
σ0, σ1, σ∞ ∈ SN such that
• Each of these permutations is a product of disjoint cycles with

corresponding cycle types;
• σ0 ◦ σ1 ◦ σ∞ = 1; and
• G = 〈σ0, σ1, σ∞〉 is transitive subgroup of SN .

The transitive subgroup G = 〈σ0, σ1, σ∞〉 is called a Monodromy
Group.

Examples of Monodromy Groups
Such a group G may not be unique to the degree sequence. For example,
D =

{
{1, 4}, {1, 4}, {5}

}
for N = 5 corresponds to both

σ0 = (2) (1 3 5 4) σ0 = (2) (1 4 3 5)
σ1 = (4) (1 3 5 2) σ1 = (4) (1 4 5 2)
σ∞ = (1 2 3 4 5) σ∞ = (1 2 3 4 5)

=⇒ G ' S5 =⇒ G ' F20 ' Z5 o Z4

Similarly, such a group may not exist. For example, D ={
{1, 1, 2, 2}, {6}, {6}

}
for N = 6 has no such group.

Algorithm
We perform the following steps.

#1. Fix a positive integer N and a nonnegative integer g. This will serve as
the degree of the desired Bely̆ı maps β : X → P1(C) as well as the genus
of the compact, connected Riemann surface X .

#2. Compute all degree sequences D. They are multisets of three partitions of
N satisfying N = |B| + |W | + |F | +

(
2 g − 2

)
.

#3. For each degree sequence D, compute all possible monodromy groups
G = 〈σ0, σ1, σ∞〉. This amounts to searching for certain permutations
σ0, σ1, σ∞ ∈ SN – which we may do up to a certain equivalence relation.

#4. For each monodromy group G, compute all possible Bely̆ı pairs (X, β).
We know exactly how many there are by counting certain double cosets∣∣CG(σ0)\G/CG(σ1)

∣∣ using the Cauchy-Frobenius Lemma.

#5. For each Bely̆ı pais (X, β), draw its Dessin d’Enfant.

Examples of Bely̆ı Pairs

• For the elliptic curve E : y2 = x3 + 1, the Bely̆ı map β(x, y) =
(
y + 1

)
/2

has deg β = 3 and degree sequence D =
{
{3}, {3}, {3}

}
.

Dessin d’Enfant of β(x, y) = y + 1
2

for E : y2 = x3 + 1

• For the elliptic curve E : y2 = x3 + x2 + 16 x + 180, the Bely̆ı map
β(x, y) =

(
x2 + 4 y + 56

)
/108 has deg β = 4 and degree sequence

D =
{
{1, 3}, {4}, {4}

}
.

Dessin d’Enfant of β(x, y) = x2 + 4 y + 56
108

for
E : y2 = x3 + x2 + 16 x + 180

• For the elliptic curve E : y2 = x3 − x, the Bely̆ı map β(x, y) = x2 has
deg β = 4 and degree sequence D =

{
{2, 2}, {4}, {4}

}
.

Dessin d’Enfant of β(x, y) = x2 for E : y2 = x3 − x
• For the elliptic curve E : y2 + y = x3 + x2 + 2 x + 4, the Bely̆ı map
β(x, y) =

(
x y − 5x2 + 7 y − 2x + 15

)
/27 has deg β = 5 and degree

sequence D =
{
{1, 1, 3}, {5}, {5}

}
.

Dessin d’Enfant of β(x, y) = x y − 5x2 + 7 y − 2x + 15
27

for
E : y2 + y = x3 + x2 + 2 x + 4

Results
We have only applied the algorithm for g = 1 and N ≤ 6; there are 29 such
sequences. We only have a handful of examples of Bely̆ı maps β : X → P1(C).

Degree N Degree Sequences D

N = 1 None

N = 2 None

N = 3
{
{3}, {3}, {3}

}
N = 4

{
{1, 3}, {4}, {4}

}{
{2, 2}, {4}, {4}

}

N = 5

{
{1, 1, 3}, {5}, {5}

}{
{1, 2, 2}, {5}, {5}

}{
{1, 4}, {1, 4}, {5}

}{
{2, 3}, {2, 3}, {5}

}{
{2, 3}, {1, 4}, {5}

}

N = 6

{
{1, 1, 2, 2}, {6}, {6}

}{
{1, 1, 1, 3}, {6}, {6}

}{
{2, 2, 2}, {3, 3}, {6}

}{
{1, 2, 3}, {3, 3}, {6}

}{
{1, 1, 4}, {3, 3}, {6}

}{
{2, 2, 2}, {2, 4}, {6}

}{
{1, 2, 3}, {2, 4}, {6}

}

{
{1, 1, 4}, {2, 4}, {6}

}{
{2, 2, 2}, {1, 5}, {6}

}{
{1, 2, 3}, {1, 5}, {6}

}{
{1, 1, 4}, {1, 5}, {6}

}{
{3, 3}, {3, 3}, {3, 3}

}{
{3, 3}, {3, 3}, {2, 4}

}{
{3, 3}, {3, 3}, {1, 5}

}

{
{3, 3}, {2, 4}, {2, 4}

}{
{3, 3}, {2, 4}, {1, 5}

}{
{3, 3}, {1, 5}, {1, 5}

}{
{2, 4}, {2, 4}, {2, 4}

}{
{2, 4}, {2, 4}, {1, 5}

}{
{2, 4}, {1, 5}, {1, 5}

}{
{1, 5}, {1, 5}, {1, 5}

}

Future Work
It will be relatively easy to create a database which consists of degree sequences
D, monodromy groups G = 〈σ0, σ1, σ∞〉, and the number of Bely̆ı pairs
(X, β) for N ≤ 20. Computing the actual Bely̆ı maps β : X → P1(C) will
be extremely difficult, although drawing their Dessins d’Enfant will be easy.
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