Abstract

Abstract

A Belyi map $\beta: \mathbb{P}^{1}(\mathbb{C}) \rightarrow \mathbb{P}^{1}(\mathbb{C})$ is a rational function with at most three critical values; we may assume these values are $\{0,1, \infty\}$. A Dessin d^{\prime} Enfant is a planar bipartite graph obtained by considering the preimge of a path between two of these critical values, usually taken to be the line segment from 0 to 1 . Such graphs can be drawn on the sphere by composing with stereographic projection: $\beta^{-1}([0,1]) \subseteq \mathbb{P}^{1}(\mathbb{C}) \simeq S^{2}(\mathbb{R})$. Replacing \mathbb{P}^{1} with an elliptic curve E, there is a similar definition of a Belyĭ map $\beta: E(\mathbb{C}) \rightarrow \mathbb{P}^{1}(\mathbb{C})$. Since $E(\mathbb{C}) \simeq \mathbb{T}^{2}(\mathbb{R})$ is a torus, we call (E, β) a toroidal Belyǐ pair. The corresponding Dessin d'Enfant can be drawn on the torus by composing with an elliptic logarithm: $\beta^{-1}\left([0,1) \subset E(\mathbb{C}) \simeq \mathbb{T}^{2}(\mathbb{R})\right.$. $\beta^{-1}([0,1]) \subseteq E(\mathbb{C}) \simeq \mathbb{T}^{2}(\mathbb{R})$ This project seeks to create a database of (i) Bely̌ pairs (X, β) for either $X=\mathbb{P}^{1}(\mathbb{C}) \simeq S^{2}(\mathbb{R})$ or $X=E(\mathbb{C}) \simeq \mathbb{T}^{2}(\mathbb{R})$, (ii) their corresponding Dessins d^{d} Enfant, and (iii) their monodromy groups. For each positive Dessins d Enfant, and (iii) their monodromy groups. For each positive integer N, there are only finitely many Belyi pairs with deg $\beta=N$. Using the Hurwitz Genus formula, we can begin this database by considering all possible degree sequences \mathcal{D} on the ramification indices as multisets on three partitions of N. For each degree sequence, we compute all possible monodromy groups $G=\operatorname{im}\left[\pi_{1}\left(\mathbb{P}^{1}(\mathbb{C})-\{0,1, \infty\}\right) \rightarrow S_{N}\right]$. Finally, or each possible monodromy group, we compute explicit formulas for surfaces X. We will discuss some of the challenges of determining the structure of these groups. This work is part of PRiME (Purdue Research in Mathematics Experience) with Chineze Christopher, Robert Dicks, Gina Ferolito, Joseph Sauder, and Danika Van Niel with assistance by Edray Goins and Abhishek Parab

Belyĭ Pairs

Let X be a compact, connected Riemann surface of genus g. There are two examples of interest.

The projective line \mathbb{P}^{1} may be embedded into the projective plane using the map $\mathbb{P}^{1} \rightarrow \mathbb{P}^{2}$ which sends $\left(x_{1}: x_{0}\right) \mapsto\left(x_{1}: 0: x_{0}\right)$, so that this curve corresponds to the zeroes of the polynomial $f(x, y)=y$. The set of
complex points, namely $X=\mathbb{P}^{1}(\mathbb{C}) \simeq S^{2}(\mathbb{R})$, is a sphere, it has genus $g=0$.
An elliptic curve E is a nonsingular projective variety of genus $g=$ There is a unique complex number $j(E)=1$
corresponds to the zeroes of the polynomial

$$
f(x, y)= \begin{cases}x^{3}+1-y^{2} & \text { when } j(E)=0 ; \\ x^{3}-x-y^{2} & \text { when } j(E)=1728 ; \text { and } \\ x^{3}+\frac{3 J}{1-J} x+\frac{2 J}{1-J}-y^{2} & \text { when } j(E) \neq 0,1728 .\end{cases}
$$

The set of complex points, namely $X=E(\mathbb{C}) \simeq \mathbb{T}^{2}(\mathbb{R})$, is a torus.
Since X may be viewed as the set of zeroes of a single polynomial $f(x, y)$, a non-constant meromorphic function $\beta: X \rightarrow \mathbb{P}^{1}(\mathbb{C})$ can be written as $\beta(x, y)=p(x, y) / q(x, y)$, the inverse image

$$
\beta^{-1}(\omega)=\left\{\begin{array}{l|l}
(x: y: 1) \in \mathbb{P}^{2}(\mathbb{C}) & \begin{array}{r}
f(x, y)=0 \\
\omega_{0} p(x, y)-\omega_{1} q(x, y)=0
\end{array}
\end{array}\right\}
$$

we define e_{P} as the multiplicity of the root P in the polynomial equations above. Usually $e_{P}=1$; we say $\omega \in \mathbb{P}$ (C) is a
some $P \in \beta^{-1}(\omega)$. We say (X, β) is a Belyī Pair if β is unbranched away from $\{0,1, \infty\}$.

Dessins d'Enfants
Consider the line segment $[0,1]$ connecting 0 to 1 in $\mathbb{P}^{1}(\mathbb{C})$. For any Belyy pai (X, β), the inverse image $\beta^{-1}([0,1]) \subseteq X$ yields a bipartite graph $\Gamma=(V, E$ as follows:

- denote the "black" vertices as the inverse image $B=\beta^{-1}(0)$
- the "white" vertices as the inverse image $W=\beta^{-1}(1)$,
- the edges as the inverse image $E=\beta^{-1}([0,1])$, and
- the midpoints of the faces as the inverse image $F=\beta^{-1}(\infty)$.

That graph with vertices $V=B \cup W$ and edges E is called a Dessin d'Enfant.
Monodromy Groups

The Degree Sequence of a Belyĭ pair is a multiset

$$
\mathcal{D}=\left\{\left\{e_{P} \mid P \in B\right\},\left\{e_{P} \mid P \in W\right\},\left\{e_{P} \mid P \in F\right\}\right\}
$$

where $B=\beta^{-1}(0), W=\beta^{-1}(1)$, and $F=\beta^{-1}(\infty)$. The Riemann-Roch Theorem asserts that

$$
N=\sum_{P \in B} e_{P}=\sum_{P \in W} e_{P}=\sum_{P \in F} e_{P}=|B|+|W|+|F|+(2 g-2) .
$$

In particular, \mathcal{D} is a multiset of three partitions of $N=\operatorname{deg} \beta$ into a total of N parts.
Conversely, such a collection of multisets \mathcal{D} is the degree sequence for some Belyǐ pair (X, β) with $\operatorname{deg} \beta=N$ if and only if there exist permutations $\sigma_{0}, \sigma_{1}, \sigma_{\infty} \in S_{N}$ such that

- Each of these permutations is a product of disjoint cycles with
corresponding cycle types;
- $\sigma_{0} \circ \sigma_{1} \circ \sigma_{\infty}=1$; and
- $G=\left\langle\sigma_{0}, \sigma_{1}, \sigma_{\infty}\right\rangle$ is transitive subgroup of S_{N}.

The transitive subgroup $G=\left\langle\sigma_{0}, \sigma_{1}, \sigma_{\infty}\right\rangle$ is called a Monodromy Group.

> Examples of Monodromy Groups

Such a group G may not be unique to the degree sequence. For example Such a group G may not be unique to the degree sequence
$\mathcal{D}=\{\{1,4\},\{1,4\},\{5\}\}$ for $N=5$ corresponds to both

$\sigma_{0}=(2)(1354)$	$\sigma_{0}=(2)(1435)$
$\sigma_{1}=(4)\binom{1}{5}$	$\sigma_{1}=(4)(1452)$
$\sigma_{\infty}=(12345)$	$\sigma_{\infty}=\left(\begin{array}{l}12345)\end{array}\right.$
$G \simeq S_{5}$	$G \simeq F_{20} \simeq Z_{5} \rtimes Z_{4}$

Similarly, such a group may not exist. For example, \mathcal{D}
$\{\{1,1,2,2\},\{6\},\{6\}\}$ for $N=6$ has no such group.
Algorithm
We perform the following steps.
\#1. Fix a positive integer N and a nonnegative integer g. This will serve as the degree of the desired Belyı maps $\beta: X \rightarrow \mathbb{P}^{1}(\mathbb{C})$ as well as the genus of the compact, connected Riemann surface X
\#2. Compute all degree sequences \mathcal{D}. They are multisets of three partitions of N satisfying $N=|B|+|W|+|F|+(2 g-2)$.
\#3. For each degree sequence \mathcal{D}, compute all possible monodromy groups $G=\left\langle\sigma_{0}, \sigma_{1}, \sigma_{\infty}\right\rangle$. This amounts to searching for certain permutations
$\sigma_{0}, \sigma_{1}, \sigma_{\infty} \in S_{N}-$ which we may do up to a certain equivence relation
For each monodromy group G, compute all possible Belyi pairs (X, β). 4. For each monodromy group G, compute all possible Belyi pairs (X, β).
We know exactly how many there are by counting certain double cosets $\left|C_{G}\left(\sigma_{0}\right) \backslash G / C_{G}\left(\sigma_{1}\right)\right|$ using the Cauchy-Frobenius Lemma.

Examples of Belyĭ Pair

For the elliptic curve $E: y^{2}=x^{3}+1$, the Belyı̆ map $\beta(x, y)=(y+1) / 2$ has $\operatorname{deg} \beta=3$ and degree sequence $\mathcal{D}=\{\{3\},\{3\},\{3\}\}$

Dessin d'Enfant of $\beta(x, y)=\frac{y+1}{2}$ for $E: y^{2}=x^{3}+1$

- For the elliptic curve $E: y^{2}=x^{3}+x^{2}+16 x+180$, the Belyĭ map $\beta(x, y)=\left(x^{2}+4 y+56\right) / 108$ has deg $\beta=4$ and degree sequence
 $E: y^{2}=x^{3}+x^{2}+16 x+180$
For the elliptic curve $E: y^{2}=x^{3}-x$, the Belyi map $\beta(x, y)=x^{2}$ has $\operatorname{dog} \beta=4$ and degree sequence $\mathcal{D}=\{\{2,2\},\{4\},\{4\}\}$

Dessin d'Enfant of $\beta(x, y)=x^{2}$ for $E: y^{2}=x^{3}-x$ - For the elliptic curve $E: y^{2}+y=x^{3}+x^{2}+2 x+4$, the Belyir map $\beta(x, y)=\left(x y-5 x^{2}+7 y-2 x+15\right) / 27$ has deg $\beta=5$ and degree sequence $\mathcal{D}=\{\{1,1,3\},\{5\},\{5\}\}$

Dessin d'Enfant of $\beta(x, y)=\frac{x y-5 x^{2}+7 y-2 x+15}{27}$ for
: $y^{2}+y=x^{3}+x^{2}+2 x^{27}$

Results
We have only applied the algorithm for $g=1$ and $N \leq 6$; there are 29 such sequences. We only have a handful of examples of Bely maps $\beta: X \rightarrow \mathbb{P}^{1}(\mathbb{C})$.

Degree N	Degree Sequereses D		
$N=1$	None		
$N=2$	None		
$N=3$	\{ $\{33,\{3\},\{3\}\}$		
$N=4$	$\begin{aligned} & \{\{1,3\},\{4\},\{4\}\} \\ & \{\{2,2\},\{4\},\{4\}\} \end{aligned}$		
$N=5$	$\{\{1,1,3\},\{5\},\{5\}\}$ $\{\{1,2,2\},\{5\},\{5\}\}$ $\{\{1,4\},\{1,4\},\{5\}\}$ $\{\{2,3\},\{2,3\},\{5\}\}$ $\{\{2,3\},\{1,4\},\{5\}\}$		
$N=6$	$\{1,1,2,2\},\{66,\{6\}\}$	$\{1,1,4\},\{2,4\},\{6\}\}$	$\{\{3,3\},\{2,4\},\{2,4\}\}$
	$\{\{1,1,1,3\},\{6\},\{6\}\}$	$\{\{2,2,2\},\{1,5\},\{6\}\}$	$\{\{3,3\},\{2,4\},\{1,5\}\}$
	$\{\{2,2,2\},\{3,3\},\{6\}\}$	$\{\{1,2,3\},\{1,5\},\{6\}\}$	$\{\{3,3\},\{1,5\},\{1,5\}\}$
	$\{\{1,2,3\},\{3,3\},\{6\}\}$	$\{11,1,4\},\{1,5\},\{6\}\}$	$\{\{2,4\},\{2,4\},\{2,4\}\}$
	$\{11,1,4\},\{3,3\},\{6\}\}$	$\{\{3,3\},\{3,3\},\{3,3\}\}$	$\{\{2,4\},\{2,4\},\{1,5\}\}$
	$\{\{2,2,2\},\{2,4\},\{6\}\}$	$\{\{3,3\},\{3,3\},\{2,4\}\}$	$\{\{2,4\},\{1,5\},\{1,5\}\}$
	$\{(1,2,3\},\{2,4\},\{6\}$		

Future Work

It will be relatively easy to create a database which consists of degree sequences \mathcal{D}, monodromy groups $G=\left\langle\sigma_{0}, \sigma_{1}, \sigma_{\infty}\right\rangle$, and the number of Bely' pairs (X, β) for $N \leq 20$. Computing the actual Belyy maps $\beta: X \rightarrow \mathbb{P}^{1}(\mathbb{C})$ will
be extremely difficult, although drawing their Dessins d'Enfant will be easy.

References
[1] Antoine D. Coste, Gareth A. Jones, Manfred Streit, and Jürgen Wolfart, "Generalised Fermat Hypermaps and Galois Orbits". Glasgow Math Journal, Vol. 51 (2): 289-99. 2009.
2] Noam Elkies, "Elliptic Curves in Nature
ttp://www.math.harvard.edu/~elkies/nature htm
[3] Ernesto Girondo and Gabino González-Diez, "Introduction to Compact Riemann Surfaces and Dessins d'Enfants." Cambridge University Press (London Mathematical Society Student Texts, Vol. 79). 2012.
[4] Mark van Hoeij and Raimundas Vidunas, "Algorithms and differential relations for Belyí functions:
https://arxiv.org/abs/1305.7218
[5] Mark van Hoeij and Raimundas Vidunas, "Computation of Genus 0 Belyí functions." Mathematical software ICMS 2014: 92-98.
[6] Michael Klug, Michael Musty, Sam Schiavone, and John Voight, "Numer ical calculation of three-point branched covers of the projective line. https://arxiv.org/abs/1311.2081
[7] Joseph H. Silverman, "The Arithmetic of Elliptic Curves." Graduate Texts in Mathematics (Springer). 2009.
[8] Jeroen and Sijisling and John Voight, "On Computing Belyǐ Maps." https://arxiv.org/abs/1311.2529
9] Leonardo Zapponi, "On the Belyi Degree(s) of a Curve Defined Over a Number Field."
https://arxiv.org/abs/0904.0967
Acknowledgements
Dr. Edray Herber Goins

- Abhishek Parab

Dr Gregery Buzzard / Department of Mathematics

- College of Science
- National Science Foundation (DMS-1560394)

